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Theoretical guidance for protein crystallization based on spheres that form close-packed struc-
tures predicts that optimal assembly occurs within a ‘slot’ of second virial coefficients near the
metastable liquid-vapor critical point. However, most protein crystals are open structures stabilized
by anisotropic interactions. Using theory and simulation, we show that the crystallization slot is not
a sufficient condition for good assembly of a model protein crystal stabilized by anisotropic interac-
tions, and large density fluctuations associated with the critical point generally conflict with sym-
metry fluctuations required for crystallization. Instead, good assembly requires a thermodynamic
driving force of about kBT and an optimization of interaction specificity. Our findings suggest that
self-assembly of open crystals is more akin to viral capsid self-assembly than to the crystallization
of spherical colloids.

The need to crystallize proteins for X-ray studies has
spurred the development of theories of protein crystal-
lization. These theories are largely based on the behav-
ior of spheres with short-range isotropic attractions, a
representation motivated by two observations: phase di-
agrams for typical proteins and spherical colloids with
short range attractions are structurally similar, possess-
ing a metastable liquid-vapor binodal [1–4]; and both
proteins and spherical colloids tend to crystallize when
solution osmotic second virial coefficient lies in a defined
‘crystallization slot’ [5–7]. On the computer, short-range
isotropic spheres crystallize poorly above the metastable
liquid-vapor binodal and show enhanced nucleation rates
near or below it [3, 8–12]. Such enhancement is indeed
seen in some protein solutions [13–15]. However, other
experiments show disparities with this picture. Proteins
can crystallize readily above the binodal [16, 17] and ex-
perience kinetically-impaired crystallization below it [18].
They can also lie in the crystallization slot and not crys-
tallize [19]. In addition, although the structure of protein-
and colloid phase diagrams is similar, the microscopic na-
ture of the stable solid is not: most proteins do not form
close-packed crystals [20].

These disparities motivate a theoretical approach
to protein crystallization that acknowledges additional
features of proteins’ interactions, particularly their
anisotropy [21–26]. This approach suggests that rules
for optimal assembly of open structures are different from
the rules for optimal assembly of close-packed structures.
Here we explicitly demonstrate this difference. We have
used extensive equilibrium and nonequilibrium numer-
ical simulations and quantitatively accurate mean-field
theory to exhaustively determine the design rules for
optimal assembly of a model patterned after the SbpA
surface-layer protein. The latter forms a porous square
lattice with a tetrameric repeat unit on the surface of
the bacterium Lysinibacillus sphaericus, and in vitro on
surfaces or in solution [27–30]. We impose a simple set
of model protein interactions that stabilize the two con-
densed phases observed in experiments: specific interac-
tions to stabilize the open crystal structure [31] and non-
specific interactions to stabilize unstructured aggregates
observed in recent experiments on lipid bilayers [30]. A

similar distinction between orientationally specific and
nonspecific interactions has been considered in models of
polymer crystallization [32]. Such a model is crucially
different from isotropic models in that the same micro-
scopic interaction does not stabilize both crystal and liq-
uid phases. Instead, specific and nonspecific interactions
independently drive distinct critical behaviors [32–34].
Consequently, we find that design rules for assembly dif-
fer from those of spheres. While large density fluctua-
tions promote crystallization of close-packed spheres [3],
they tend to inhibit the symmetry fluctuations required
to achieve assembly of the open S-layer lattice. Fur-
ther, the second virial coefficient B2, an orientationally-
averaged measure of protein-protein attraction, bounds
good assembly but does not predict it. It is intuitively
reasonable that it should bound assembly: too strong
an attraction results in kinetic trapping, while too weak
an attraction suppresses crystal nucleation. However,
its orientational averaging renders it blind to the micro-
scopic origin of the attraction: model proteins with iden-
tical values of B2 but different combinations of specific
and nonspecific interactions can assemble well, poorly, or
not at all.

Instead, we find that good assembly can be predicted
by a combination of two design rules: the thermodynamic
driving force for crystallization (defined as the free en-
ergy difference between the gas and the crystal) must be
1−2 kBT , and interactions should be made as nonspecific
as possible without promoting liquid-vapor phase sepa-
ration. In experimental terms, our results suggest ad-
justing solution conditions in order to impose a defined
supersaturation at the liquid-vapor binodal. While crys-
tallization can happen at or below the binodal, we find
that such large-scale nonspecific association usually leads
to slow dynamics and poor yield. Taken in the context of
recent simulation work [35–37], our findings suggest that
the rules governing the assembly of protein crystals are
in important ways more like those governing viral capsid
self-assembly than those underpinning the crystallization
of spherical colloids.

Model and methods. We consider a generalization
of the model SbpA surface-layer protein introduced in
Ref. [24]. Hard rectangular monomers of width a (≡ 3.9
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FIG. 1: (a) Monomer geometry. (b) Square lattice stabilized
by the two chemically specific interactions: internal bonds
(filled circles) and external bonds (open circles).

nm) and length la (l = 2.2) live on a smooth, two-
dimensional substrate. Monomer interactions acknowl-
edge the tendency of SbpA proteins to form both un-
structured aggregates [30] and an open square lattice of
tetramers [31]. To allow formation of the square lat-
tice, monomers are decorated by three patches labeled E
(edge), S (short arm) and L (long arm), each located on
the hard-core boundary a distance a/2 from the nearest
vertex, as shown in Fig. 1. Patches mediate a chemically
specific internal bond of energy −εint kBT if the E and
S patches of neighboring monomers approach closer than
∆ = a/5 and an external bond of energy −εext kBT if two
L patches of neighboring monomers approach closer than
∆. To permit unstructured aggregation, monomers also
experience a nonspecific attraction of energy −εn kBT if
their surrounding rectangular forcefields (of width a+2∆
and length la+ 2∆) overlap.

To determine design rules for assembly, we extensively
varied all three energetic parameters and the packing
fraction φ. We will discuss the effects of separately vary-
ing εint and εext elsewhere. Here, we present results for
εext/εint = 2 in terms of a single specific interaction pa-
rameter εs ≡ εint = 2εext. We find that the results pre-
sented here are largely insensitive to the choice of the
ratio εext/εint.

We solved model thermodynamics in two ways, as de-
tailed in the Supplementary Methods. we used analytic
mean-field theory to determine the thermodynamic driv-
ing force for assembly, phase boundaries for stable and
metastable phases, and reduced second virial coefficients
B?2 ≡ B2/B

hard core
2 . B2 = (4π)−1 ∫

dr12dθ12 (1−e−βU12)
is calculated in the conventional way, integrating over
the phase space of two model proteins interacting via the
energy U12. The hard-core normalization Bhard core

2 is ob-
tained similarly, but for a system with no attractive inter-
actions. We calculated phase diagrams numerically using
direct coexistence and Gibbs ensemble simulations [38].
We find that phase diagrams calculated by mean-field
theory and simulation agree, except that simulation re-
veals a narrow region of thermodynamically stable liquid
that the mean-field theory does not attempt to account
for.

We determined self-assembly dynamics using virtual-
move Monte Carlo simulations [39–41] of 1024 monomers
at constant packing fraction, starting from well-mixed
conditions. Although a truly physical dynamics cannot
be effected by simulations that do not explicitly represent
solvent, some important aspects of real overdamped mo-
tion are retained by this algorithm: bodies move locally
according to potential energy gradients, and collective
diffusion constants can be scaled according to cluster size
and shape. Here, we parameterized the algorithm to en-
sure that tightly-bound protein clusters of hydrodynamic
radius R diffuse according to the Stokes solution for the
overdamped motion of a sphere of radius R, resulting
in diffusive behavior for moderate to large clusters that
is considerably more realistic than that effected by ba-
sic Brownian dynamics integrators. Taking a = 3.9 nm,
T = 300 K, and solution viscosity η = 1.00× 10−3 Pa s,
each Monte Carlo (MC) cycle corresponds to 2.42 ns.

Results. We carried out two numerical protocols, each
designed to mimic a particular experiment. First, for
three selected ‘proteins,’ each with a different balance
of specific and nonspecific interactions, we determined
where on the conventional temperature-concentration
phase diagram yield is best. Second, we determined
the microscopic mechanisms for optimal assembly by in-
dependently varying specific and nonspecific interaction
strength. As we will show, such a protocol mimics study-
ing a large ensemble of related proteins or varying solvent
chemistry to optimize assembly for a single protein.

In Fig. 2 (a) we show temperature-concentration phase
diagrams for three model proteins: specifin, with εs/εn =
2; intermedin, with εs/εn = 1.5; and nonspecifin, with
εs/εn = 1. From protein to protein, the solubility
curve shifts with interaction specificity more than the
liquid-vapor binodal, leading to a change of phase di-
agram structure [32] similar to that effected by chang-
ing the range of attraction of an isotropic sphere [3, 42–
44]. Specifin and intermedin display a metastable liquid-
vapor coexistence, while nonspecifin displays a stable
liquid-vapor coexistence. Intermedin and nonspecifin
also display a transition from a square lattice (φ ≈ 0.70)
to a close-packed crystal (φ ≈ 0.76) at high temperature.

To reveal how well these proteins crystallize, we overlay
phase diagrams with color maps quantifying the crystal
yield obtained after long dynamic simulations. Green in-
dicates high yield; red, low yield. Specifin self-assembles
best above the liquid-vapor critical point, intermedin as-
sembles best near or just below it, and nonspecifin crys-
tallizes poorly throughout its phase diagram. Below
the binodal, monomers generally form kinetically slug-
gish gel-like or microcrystalline clusters that lead to poor
yield. We illustrate dynamic trajectories leading to these
outcomes in Fig. 2 (b) by showing snapshots at early
(105 MC cycles) and late (5 × 106 MC cycles) times for
near-optimal conditions for each protein. (See also the
corresponding Movies S1, S2, and S3.)

For this set of proteins, optimal assembly does not
track the liquid-vapor binodal. Moreover, assembly is not

http://nanotheory.lbl.gov/people/design_rules_paper/methods.pdf
http://nanotheory.lbl.gov/people/design_rules_paper/specifin.mov
http://nanotheory.lbl.gov/people/design_rules_paper/intermedin.mov
http://nanotheory.lbl.gov/people/design_rules_paper/nonspecifin.mov
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FIG. 2: Optimal yield is not predicted by B?
2 or the position of the liquid-vapor binodal. (a) Phase diagrams (temperature

T ≡ 1/εn vs packing fraction φ) for three model proteins whose interaction specificities decrease from left to right. We overlay
the analytic solubility curve (solid), which agrees with the numeric data with no adjustable parameters, lines of fixed driving
force F (dashed), and a color map of square lattice yield (obtained after dynamic simulations of 107 MC cycles). The position
of best yield does not track the liquid-vapor binodal (critical points shown as stars) or a fixed slot of B?

2 (right ticks). Insets
show phase diagrams on a more conventional linear horizontal scale. (b) Snapshots show example dynamic simulations for
each protein after 105 (left) and 5× 106 (right) MC cycles for the points on the phase diagrams labeled by open circles.

predicted by the crystallization slot [5], which provides
a necessary but not a sufficient condition for crystalliza-
tion: good assembly indeed generally occurs in a slot
−100 . B?2 . −2, but peak yield within this slot can
be highly localized (specifin), or uniformly poor (non-
specifin). From our analytic theory we calculated lines
of constant F , the thermodynamic driving force for crys-
tallization. The proteins that assemble well do so in the
window F = 1 − 2 kBT . Our analytic theory demon-
strates that this window is equivalent to a supersatu-
ration S ≡ φ/φgas(T ) = 5 − 20, where φgas(T ) is the
solubility packing fraction.

The temperature-concentration diagrams of Fig. 2 re-
veal where yield is good and where it is bad. To identify
the molecular dynamical origins of these behaviors it is
necessary to survey an ensemble of related proteins. We
do this in Figs. 3 and 4 by independently varying the spe-
cific and nonspecific interactions at fixed packing fraction
φ = 0.1. Fig. 3 shows a color map of crystal yield overlaid
on the phase diagram spanned by the two interactions.
The surrounding simulation snapshots label the equilib-
rium phase or coexisting phases within each region of the
phase diagram. The three proteins of Fig. 2 lie on the
dashed yellow lines. Fig. 4 shows ‘pathway diagrams’ [34]
which identify, along self-assembly trajectories, the max-
imum fractions of ‘misbound’ proteins (those with their

external specific bond satisfied but only one of their two
internal specific bonds satisfied) and nonspecifically ag-
gregated proteins (those having no specific bonds and two
or more nonspecific bonds).

Optimal yield occurs in the part of the phase diagram
identified by two conditions: 1) the thermodynamic driv-
ing force F for crystallization must be 1 − 2 kBT , and
2) the nonspecific attraction must be as large as possi-
ble without inducing liquid-vapor phase separation. The
window of optimal F lies between the weakly supersatu-
rated region near the solubility curve, where nucleation
barriers are too high for crystallization to happen in the
alloted simulation time, and the strongly supersaturated
region at large εs, where misbinding predominates (see
Fig. 4). The thermodynamic driving force is substan-
tially more predictive than the second virial coefficient;
while most good assembly occurs with the displayed slot
−100 . B?2 . −5, this slot includes large parts of the
phase diagram where assembly is poor or nonexistent,
including regions where the target crystal is not stable.

Within the window F = 1 − 2 kBT , yield initially in-
creases as specific interaction strength is traded for non-
specific interaction strength. We argue that this is due
to a combination of two effects. First, the nonspecific at-
traction provides a larger interaction ‘cross-section’ than
do the sticky patches alone, enabling diffusing particles
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FIG. 3: Weak nonspecific association is optimal. Phase dia-
gram and dynamic yield color map for φ = 0.1 and a range of
protein specific and nonspecific interactions. Solid (dashed)
grey curves denote the stable (metastable) boundaries for the
labeled simulated coexistence combinations. All boundaries
were calculated using analytic theory, except for the boundary
between homogeneous and phase-separated monomer fluids;
this was determined using Gibbs ensemble simulations. The
dashed black (white) curves denote lines of constant B?

2 (driv-
ing force F). Dash-dotted yellow lines represent the proteins
from Fig. 2; for a fixed protein, temperature increases to the
left along these lines.

to associate more rapidly and thereby enhancing crystal-
lization kinetics. Second, weak nonspecific interactions
help to stabilize the target structure, allowing specific
interactions to be made weaker at fixed thermodynamic
driving force. Multiple weak interactions are easier to
break than few strong interactions and allow defective
binding motifs to be corrected more easily; this is the
idea of microscopic ‘reversibility’ [37, 45, 46].

However, the trend of increasing yield with decreas-
ing specificity terminates at the metastable liquid phase
boundary. As the ‘aggregated’ pathway diagram of Fig. 4
indicates, this phase boundary signals the onset of large-
scale nonspecific aggregation. Density fluctuations as-
sociated with phase separation therefore conflict with
the symmetry fluctuations required to stabilize the open
crystal lattice. This behavior is strikingly distinct from
that of isotropic models, which crystallize best at the
metastable critical point. However, assembly of model
capsomer proteins into icosahedral viral capsids [35–37]
shares the behavior of the present model; there, as-
sembly is also impaired by liquid-like aggregation at
low interaction specificity [35]. We conjecture that for
open structures in two and three dimensions stabilized
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FIG. 4: Large-scale nonspecific aggregation hinders crystal as-
sembly. ‘Pathway diagrams’ show color maps of the maximum
fractions of misbound and nonspecifically aggregated proteins
for φ = 0.1 and a range of protein specific and nonspecific in-
teractions (see Fig. 3). Comparison of the yield (Fig. 3) and
pathway color maps reveals a rule of thumb for optimizing
assembly: impose the strongest nonspecific interaction that
does not induce liquid-vapor phase separation.

by anisotropic attractions, weak nonspecific association
should aid assembly, but large density fluctuations associ-
ated with the liquid-vapor critical point should generally
impair it.

Note that nonspecifin (lowest dash-dotted yellow line
in Fig. 3) could be transformed into specifin (highest
dash-dotted yellow line in Fig. 3) if its crystal-forming
contacts were strengthened. Extrapolating our results
to real protein systems suggests that solvent chemistry
might be adjusted (even at constant B?2) to optimize the
ability of a defined protein to crystallize. For instance,
recent experiments suggest that multivalent salt concen-
tration can be adjusted to tune specific protein-protein
interactions [47].

Conclusions. Typical protein phase diagrams resem-
ble those of isotropic colloids bearing short-range attrac-
tions, but, crucially, they describe different solid struc-
tures. Here we have shown that the self-assembly of an
open crystal formed by a surface-layer protein is different
in significant ways from the assembly of a close-packed
crystal. However, it can be rationalized by a set of rel-
atively simple design rules. First, the thermodynamic
driving force for crystallization must be of order kBT .
Second, interactions should be adjusted to trade specific
interaction strength for weak nonspecific association; sub-
stantial nonspecific aggregation is deleterious. Compari-
son of our results with those for model viral capsid self-
assembly [35–37] suggest that our design rules are com-
mon to both extended and closed structures and hold in
both two and three dimensions.

In experimental terms, our results suggest quantita-
tive guidelines for optimizing crystal yield in real protein
systems. Our window of optimal thermodynamic driving
force corresponds to a supersaturation of 5 to 20. Com-
bined with the observation that metastable liquid-vapor
phase separation hinders crystal assembly, this observa-
tion suggests that there exists an optimal ‘metastability
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gap’ [48] between the solubility curve and the binodal.
Based on the present model, we advocate adjusting solu-
tion conditions to impose a supersaturation at the bin-
odal of about 20.
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